Spatial Modeling of Censored Survival Data
Authors
Abstract:
An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper, a spatial survival model is introduced to analyze such kinds of data. Then a simulation method is introduced to study the performance of Cox, frailty and spatial survival models for modeling spatially correlated survival data. Next, the proposed spatial survival model is used to model the time disease of Cercosporiose in olive trees. Finally, results and discussion are presented
similar resources
Nonparametric Tree-Structured Modeling for Interval-Censored Survival Data
Survival analysis has been a major research area in statistics. In survival analysis, time to some event is usually the outcome variable. The objective of a survival study is to identify the relationship between treatments, risk factors or other covariates and the time to event. However, in a real clinical trial or longitudinal study, the exact time to event for each participant is not always k...
full textBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
full textModeling Spatial Variation in Leukemia Survival Data
In this article we combine ideas from spatial statistics with lifetime data analysis techniques to investigate possible spatial variation in survival of adult acute myeloid leukemia patients in northwest England. Exploratory analysis suggests both clinically and statistically signi cant variation in survival rates across the region. A multivariate gamma frailty model incorporating spatial depe...
full textFailure Process Modeling with Censored Data in Accelerated Life Tests
Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...
full textAnalysis of Censored Survival Data with Dimension Reduction Methods: Tehran Lipid and Glucose Study
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. To specify an appropriate model to determine the risk of CVD and predict survival rate, users are required to specify a functional form which relates the outcome variables to the input ones. In this paper, we proposed a dimension reduction method using a general model, which includes many widely used survival m...
full textInteraction trees with censored survival data.
We propose an interaction tree (IT) procedure to optimize the subgroup analysis in comparative studies that involve censored survival times. The proposed method recursively partitions the data into two subsets that show the greatest interaction with the treatment, which results in a number of objectively defined subgroups: in some of them the treatment effect is prominent while in others the tr...
full textMy Resources
Journal title
volume 1 issue 2
pages 61- 70
publication date 2016-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023